Beaucoup de ces enseignements comporte des cours, des Travaux Dirigés et/ou des Travaux Pratiques. La majeure IMPE bénéficie d’une salle informatique à son seul usage équipée de stations de travail, sous système UNIX. En dehors des enseignements, cette salle permet le travail personnel sur projet informatique en libre-service, avec respect d’un réglement intérieur.

Premier semestre

Bloc de base

UE - Ingénierie 1 6

  • Méthodes Numériques IFMA ISDS
    • Cindy Guichard
    • 21h
    • Ce cours traite de la discrétisation des EDP en 1D notamment par la méthode des différences finies. Des notions d’algèbre linéaire numérique seront également abordées en fin de cours. En fonction du parcours de l’étudiant.e, ce contenu pourra être vu comme des rappels de M1.

  • Fondamentaux du C++ IFMA ISDS
    • Guillaume Delay
    • 21h
    • Ce cours traite la syntaxe et les outils fondamentaux du langage C++. On aborde notamment l’allocation dynamique, la programmation orientée objet (classes, héritage, polymorphisme dynamique) et la programmation générique (templates, STL, polymorphisme statique). Chaque séance de cours magistral est suivie d’une séance de mise en pratique sur machine. L’évaluation consiste en un DM et une épreuve de programmation en temps limité.

  • Modèles aléatoires markoviens IFMA ISDS
    • Vincent Lemaire
    • 21h
    • Cours d’introduction aux processus de Markov: chaînes de Markov à temps discret et à temps continu (processus de sauts markoviens), comportement en temps long (résultats d’ergodicité), applications aux files d’attentes, processus de Markov à valeurs dans un espace d’état continu (notion de semi-groupe).

UE - Mathématiques pour la modélisation 6

  • Méthodes d'optimisation numériques
    • Marie Postel
    • 21h
    • Rappel (ou la découverte) de quelques méthodes et algorithmes d’optimisation continue, dans le cas sans contraintes (gradient, Newton) et avec contraintes (extréma liés, théorème de Karush Kuhn Tucker) Utilisation de Matlab, logiciel scientifique en langage interprété très utilisé dans les entreprises, pour appliquer directement les méthodes numériques vues en cours.

  • Monte Carlo IFMA
    • Raphaël Roux
    • 21h
    • Généralités sur les méthodes de Monte Carlo (Loi des grands nombres, vitesse de convergence et intervalles de confiance), simulation de variables et vecteurs aléatoires (inversion, rejet, transformation, variables corrélées), réduction de variance (variables de contrôle et antithétique, stratification, fonction d’importance), méthodes de quasi-Monte Carlo (discrépance, exemples de suites à discrépance faible), calcul de sensibilité (différences finies, différentiation et log-vraisemblance).

  • Statistique inférentielle IFMA
    • Yassin Mazroui
    • 21h
    • Introduction à la statistique mathématique: modèles statistiques paramétriques, estimation ponctuelle, intervalles de confiance, tests statistiques. TP avec le logiciel R.

Bloc fondamental

UE - Informatique pour l'ingénierie 6

  • Séries chronologiques IFMA
    • Jean-Patrick Baudry
    • 24h
    • Introduction aux méthodes statistiques de traitement de données temporelles dépendantes : propriétés au second ordre d’une série temporelle ; stationnarité et stationnarisation ; tendance et saisonnalité ; fonction d’autocovariance ; prédiction linéaire ; modèles paramétriques : AR, MA, ARMA.

  • Analyse de données IFMA
    • Yassin Mazroui
    • 24h
    • Consolidation des connaissances théoriques et pratiques (TP avec le logiciel R) d’Analyse de données et de Statistique appliquée. L’objectif est de permettre aux étudiants d’acquérir les bons réflexes avant d’analyser une base de données, d’avoir une palette assez large de méthodes d’analyse, de connaître les limites d’application de ces méthodes.

      • Analyse descriptive (numérique et graphique)
      • Tests paramétriques et non-paramétriques d’égalité de moyennes (Student, Mann-Whitney), d’égalité de proportions (Chi-2, Fisher exact) pour 2 échantillons indépendants et appariés
      • ANOVA à un et deux facteurs, ANCOVA, test de Krukal-Wallis
      • Modèles de régression linéaire simple et multiple, test de corrélation li- néaire
      • Modèles de régression logistique simple et multiple, notion de rapport de côte
      • Analyse exploratoire : Analyse en Composante Principale
      • Analyse de survie (survenue d’un événement : décès, panne d’une machine,…)
  • Programmation en Python IFMA
    • Baptiste Gregorutti (SCAI)
    • 12h
    • Ce cours débute avec un rappel des éléments fondamentaux de Python 3 (types, structures du code, les classes) en y pointant au passage quelques pièges communs (telles que la transmission des données mutables/immutales). Le cours développe ensuite les possibilités offertes par quelques bibliothèques pour les sciences numériques: numpy, pandas et matplotlib. La partie pratique vise à mettre en situation les mécanismes décrits en cours et invite à explorer les concepts et ces bibliothèques, à travers leurs documentations, afin d’en préciser l’emploi en situation.

  • Introduction au CUDA (GPU) IFMA ISDS
    • Lokmane Abbas-Turki
    • 12h
    • Ce cours introduit de façon simple et efficace à la simulation sur GPU (Graphics Processing Units). Il est agencé autour de la simulation Monte Carlo fortement adaptée à la parallélisation. Il permet ainsi de se concentrer sur les optimisations permises par l’architecture du GPU.

UE - Ingénierie 2 6

  • Méthode pour les EDP : algorithmes FFT et QFT
    • Sidi-Mahmoud Kaber et Marie Postel
    • 21h
    • Cet enseignement présentera tout d’abord l’algorithme FFT : Fast Fourier Transform. Puis on étudiera son adaptation à l’informatique quantique, la QFT : Quantum Fourier Transform. Les cours relatifs à la QFT (initiation à l’info quantique et présentation de l’agorithme QFT) seront en commun avec le Master Math. Mod.

  • Approfondissement C++
    • Guillaume Delay
    • 24h
    • Ce cours est basé sur une approche projet. Les étudiants travaillent par binôme sur un projet de programmation en C++ qu’ils choisissent et sur lequel ils sont évalués. A chaque séance, on fait une réunion d’avancement de projet avec chaque binôme et on présente des outils de programmation. On verra, entre autres, ce qu’on peut attendre d’un IDE, les logiciels git, gdb, valgrind, et l’utilisation des exceptions. Exemples de projets possibles : un logiciel d’éléments finis en 2D, un logiciel de résolution de Sudoku, un jeu graphique en 2D (tetris, snake, …)

  • Projet Optimisation
    • Max Cerf (EADS)
    • 24h
    • Le projet a pour but de mettre en oeuvre sur un problème de lancement spatial les connaissances acquises en cours d’optimisation. La première étape consiste à développer un algorithme d’optimisation par méthode SQP (Sequential Quadratic Programming) et à le vaiider sur des cas tests fournis, dont un problème d’étagement du lanceur Ariane. La deuxième étape consiste à développer un simulateur simplifié de la trajectoire du lancement (trajectoire plane, modèles de forces élémentaires, commande paramétrique par phase de vol). La troisième étape consiste à réaliser le dimensionnement d’un lanceur spatial en itérant sur l’optimisation d’étagement et l’optimisation de trajectoire afin d’aboutir au lanceur optimal pour une mission donnée (charge utile, orbite visée). L’ensemble du projet est réalisé en Matlab.

Formation complémentaire

UE - Anglais 3

  • Anglais IFMA ISDS
    • Jamal Ait Mouhoucht, Département de langues
      • Remise à niveau en anglais
      • Préparation aux entretiens professionnels oraux
      • Préparation au TOEIC

UE - Insertion Professionnelle 3

  • Insertion professionnelle pour les non apprentis IFMA ISDS
    • Resp. IMPE
      • Participation au Forum Entreprises et Math. (FEM) et à l’Atrium des métiers.
      • Devoirs CV et candidature à un stage.

      Pour les apprentis, un dossier professionnel sera évalué (rapport, avis du maître d’apprentissage et du tuteur académique)

Second semestre

Bloc de spécialisation

UE - Spécialisation 1 6

  • Fiabilité IFMA
    • Michèle Thieullen (SU), Thomas Guillon (RTE)
    • 30h
      • Partie théorique (M. Thieullen): Modèles semi-markoviens et processus déterministes par morceaux (PDMP).

      Le but du cours et des séances de TD est de passer en revue certains aspects théoriques des modèles fondamentaux en fiabilité. On y abordera les chaînes de Markov, le processus de Poisson, les processus de renouvellement, les processus semi-markoviens et de Markov déterministes par morceaux. Le fil conducteur est la notion de taux de hasard pour la modélisation d’événements aléatoires.

      • Partie industrielle (T. Guillon, A. Fremond et S. Tazi, RTE): Introduction à la science des risques et aux trois grandes stratégies de gestions de risques (Risk-Informed, principe de prudence, stratégie discursive), études des cas : Faillite de Pacific Gas & Electricity, Crashs Boeing 737 MAX. Statistiques des durées de vie et biais d’observations (estimateur de Kaplan-Meier, estimateur du maximum de vraisemblance, regréssion de survie). Valorisation des conséquences et analyse socio-économique. Politiques de maintenance préventive, processus de renouvellement à récompense, politiques optimales de remplacement par âge. Étude de cas et TP en python.
  • VBA IFMA
    • Maha Abdallah
    • 30h
    • Modélisation et conception de schéma de BD (modèle E/A), Traduction de schéma conceptuel en schéma logique (modèle relationnel), Introduction à SQL et requêtes simples, Requêtes SQL avancées (jointures, imbrication, agrégation, regroupement), Création et modification de schéma, Contraintes d’intégrité, Insertion et mises à jour de données, Manipulation avancée de données (programmation Transact-SQL, Triggers, etc.), Transactions et propriétés ACID, Introduction aux bases de données NoSQL, Éléments de programmation en VBA/Excel.

UE - Spécialisation 2 6

  • Machine Learning IFMA
    • Ana Karina Fermin Rodriguez (Univ. Paris Nanterre)
    • 15h
    • Introduction à l’apprentissage statistique supervisé: construction de prédictions automatisées à partir d’une base d’exemples de bonnes prédictions. Nous décrirons le cadre théorique et présenterons les méthodes les plus classiques. Un accent sera mis sur le choix et la validation de ces méthodes à l’aide des données elles-mêmes. Le cours est illustré par des exemples dans le langage R. Il se valide par un projet avec R sur des données réelles.

  • Calcul parallèle ISDS
    • Xavier Juvigny (Onera)
    • 30h
    • Présentation des architectures parallèles, architecture de la mémoire (partagée, hiérarchique, distribuée, hybride, etc.). Modèles de programmation : OpenMP (mémoire partagé ) MPI (mémoire distribuée).

      Algorithmes parallèles distribués dans le contexte de résolution de grands systèmes linéaires pleins ou creux, par méthodes directes ou itératives. Approches de découpage par blocs pour des matrices pleines ou par décomposition de graphe (de la matrice ou du maillage) pour des matrices creuses. TD en Python avec MPI et projets.

  • Projet Python / Calcul parallèle
    • Xavier Juvigny (Onera)
    • 15h
    • Ce projet vise à approfondir l’usage de Python 3 dans un contexte numérique. Différents sujets de projet sont proposés, et il vous est possible d’y soumettre votre propre projet (soumis à la validation de l’encadrant). A travers des séances de travail supervisés, vous serez conseillés et orientés dans votre pratique du langage Python 3 afin d’atteindre un programme complet et de bonnes pratiques de programmation.

Stage

UE - Stage 18

  • Stage en entreprise IFMA ISDS
    • Resp. IMPE
    • 4 à 6 mois
    • Pour en savoir plus, consultez la page sur les stages. Pour les apprentis, cette UE est remplaçée par une UE “Mission en entreprise”, également à 18 ECTS.

Validation et Diplôme

La validation des semestres du Master 2 (semestres S3 et S4 du Master) se fait selon la règle suivante:

A la fin d’une année réussie vous serez diplômé de Sorbonne Université

Master de Sciences et Technologies de la Faculté des Sciences de Sorbonne Université
Mention Mathématiques et Applications
Spécialité Ingénierie mathématique
Majeure Ingénierie et Mathématiques Pour l'Entreprise